A

18735 120 MINUTES

1.		•		I modification in a mammalian system?
	A)	Palmitoyalation	B)	Glycosylation
	C)	Peptidylation	D)	Phosphorylation
2.	Whic	ch one of the following bases has the la	rgest h	ydrogen bonding possibility?
	A)	Adenine	B)	Guanine
	C)	Cytosine	D)	Uracil
3.	Thyr	oxin releasing hormone (TRH) recepto	r belon	igs to:
	A)	Nuclear receptor family		
	B)	Receptor tyrosin kinase family		
	C)	G-protien – coupled receptor family		
	D)	Guanylate cyclase receptor family		
4.	The	fungal group presently classified under	protist	s is:
	A)	Zygomycetes	B)	Oomycetes
	C)	Deuteromycetes	D)	Discomycetes
5.	Nam	e the common Indian bird that is gener	ally see	en is groups (aggregation)
	A)	Bulbul	B)	Warbler
	C)	Babbler	D)	Sun bird
6.	The	fungus associated with human oral or v	aginal	infection is:
	A)	Fusarium	B)	Aspergillus
	C)	Candida	D)	Pneumocystis
7.	The	wings of insects and the wings of bats i	eprese	nt a case of:
	A)	Divergent evolution	B)	Convergent evolution
	C)	Parallel evolution	D)	Neutral evolution
8.	In wl	hich ecosystem is the detritus pathway	of ener	gy flow most important?
	A)	Lakes	B)	Grasslands
	C)	Tropical rain forests	D)	Oceans
9.	Whic	ch one of the following is unfavourable	for pro	otein folding?
	A)	Hydrophobic interaction	B)	Van dar Waals interaction
	C)	Conformational entropy	D)	Hydrogen bonding
10.	Whic	ch one of the following is a type of inte	rcellula	ar junction in animal cells?
	A)	Middle lamella	B)	Plasmodesmata
	C)	Desmosomes	D)	Glycocalyx
11.		eed is assumed to be dispersed randor describe the dispersion correctly?	nly in	a meadow. What statistical distribution
	A)	Binomial	B)	Negative Binomial
	C)	Poisson	D)	Normal
	\sim	1 0100011	-)	1 VIIIMI

12.	Individuals with greater mass have a smaller surface area to volume ratio, which helps to conserve heat. This is known as											
	A) C)	Leibig's rule Gloger's rule			B) D)	Cope's rule Bergmann's	rule					
13.	Which	n one of the fol	lowing i	s NOT an exti	acellula	ar matrix prote	in?					
	A)	Fibronectin	B)	Vitronectin	C)	Laminin	D)	Cyclin				
14.		omosome aberi er its linkage g		_	in the c	order of genes	in a gen	etic map but o	loes			
	A)	Translocation			B)	Recombinat	ion					
	C)	Transposition	1		D)	Inversion						
15.	-	art of the embr is known as	yo from	which the ect	oderm,	mesoderm and	d endod	erm are forme	d in			
	A)	Primitive stre	eak		B)	Hypoblast						
	C)	Epiblast			D)	Cytotrophob	olast					
16.		movement of opment. This coluse:										
	A) C)	Phase contras Fluorescence		* *	B) D)	Bright field Atomic force						
	C)	Tuorescence	incrose	Юру	D)	7 HOTTIC TOTO	c iiiicio.	зсору				
17.	Which A) B) C) D)	of the followi Organisms sp Marine plank Eukaryotic or Acidophilic o	ecialize ton rganisms	d for high altit		the ability to fi	x nitrog	en?				
18.	Which A)	of the followi CO ₂	ng green B)	nhouse gas has CH4	got hig C)	ghest atmosphe N ₂ O	eric lifet D)	ime? CFC _s				
19.		n of the follow nplex immune	_	• •	esses pl	layed an impor	rtant rol	e in the evolu	tion			
	A)	Reproductive		n	B)	Adaptive rac						
	C)	Neutral evolu	ition		D)	Co-evolution	n					
20.		ffect of nonser n of the follow ants?				•						
	A)	Complementa			B)	Transgenesis						
	C)	Test for alleli	sm		D)	Recombinat	ion					
21.	2-Am	inopurine indu	ces muta	ation by:								
	A)	Base pair cha		J	B)	Frameshift						
	C)	Duplication			D)	Insertion						

22.	Which A)	of the following is an Vitronectin B)	intracellular ar Vinculin	nchor pr C)	otein? Integrin	D)	Elastin				
22	,	C41 C 11 :	1		C		DMAG				
23.		one of the following	interaction play	_							
	A)	Hydrogen bond	, •	B)	Hydrophobic		tion				
	C)	Van der Wall's intera	action	D)	Ionic interact	.10n					
24.	Major	disadvantage of using liposome as a targeted drug delivery vehicle is that									
	A)	It gets internalized by	y phagocytosis	inside ly	ysosomes						
	B)	It is very unstable an	d has low shelf-	-life							
	C)	It gets intercalated in									
	D)	It's drug entrapment	efficiency is ve	ry low							
25.	During	g DNA replication, eve	ents at the replic	cation fo	ork require dif	ferent ty	pes of enzymes				
	having	specialized functions	except:		_						
	A)	DNA polymerase III	•	B)	DNA gyrase						
	C)	DNA ligase		D)	DNA glycosy	ylase					
26.	The sr	ecificity of tRNA rec	cognition by a	aminoa	evl tRNAsvntl	hetase tl	hat is intrinsic to				
_ • •		NA molecule lies on:	B		-						
	A)	Acceptor stem		B)	Acceptor ster	m and ar	nticodon loop				
	C)	Anticodon loop		D)	D-arm		avio de la cop				
	<i>C)</i>	i milito delli le ep		2)	D WIII						
27.	Viral g	gene expression after T	Γ3 bacteriophag	e infect	ion is controll	ed by:					
	A)	Repressor molecule		B)	Slow injection	n of nuc	eleic acid				
	C)	Modification of RNA	A polymerase	D)	DNA polyme	erase					
28.	Which in man	one of the following	is responsible t	for the e	ejection of mil	k from 1	mammary glands				
	A)	Oxytocin		B)	Prolactin						
	C)	Serotonin		D)	Melatonin						
	C)	Scrotomii		D)	Wiciatollili						
29.		eter similarity that can	be misinterpret				ed:				
	A)	Symplesiomorphy		B)	Synapomorpi	ny					
	C)	Homology		D)	Homoplasy						
30.		on at two different lo		gene X	results in alte	red func	ctions. These two				
	A)	Alleles		B)	Complement	ation gro	oups				
	C)	Interrupted genes		D)	Linkage grou	_	•				
31.	it to re	e encoding tRNA unde ecognize a mutant no on is known as									
	A)	Silent mutation		B)	Neutral muta	tion					
	C)	Reversion		D)	Nonsense sui						

32.	A paraphyletic group											
<i>52</i> .	A)	Contains unrelated of	organisms									
	B)	Includes the most re	_	ancestor	but not all of	its descen	dents					
	C)	Includes all the re ancestor	presentatives of	of a cla	nde but not	the most	recent common					
	D)	Contains all the repr	resentatives of a	a clade a	and the most r	ecent com	nmon ancestor					
33.		se of biotinylated seco		•								
	A)	Increases the sensiti	•	-	-	-	2					
	B)	Increases the sensiti	•	_		ing the sp	ecificity					
	C)	Does not alter either			ity							
	D)	D) Decreases both sensitivity and specificity										
34.	Which is the best method for checking mycoplasma contamination in a mammalian cell line?											
	A)	Southern hybridizat	ion	B)	ELISA							
	C)	PCR		D)	Western hy	bridizatio	n					
35.	Which of the following pairings is incorrect?											
	A)	Linnaeus: 2 kingdor		B)	Chatton: 2 empires							
	C)	Whittaker: 5 kingdo	ms	D)	Cavalier-Sn	nith: 4 kin	gdoms					
36.		a single specimen is	clearly designa	ated in t	he original de	scription,	this specimen is					
	know											
	A)	Paratype B)	Holotype	C)	Allotype	D)	Neotype					
37.	Which definition is correct?											
	A)	A) A dominant allele is expressed only if homozygous.										
	B)	A dominant allele is	expressed only	y in a he	eterozygote.							
	C)	A recessive allele is	expressed only	in a ho	mozygote.							
	D)											
38.	Which	n of the following is b	est suited to tre	atment	with gene the	rapy?						
	A)	A dominant mutatio	n (such as in H	untingto	on's disease).							
	B)	A recessive mutation	n (such as in cy	stic fibr	osis).							
	C)	An extra chromoson	ne (such as in I	Down sy	ndrome).							
	D)	Gene amplification	(such as in brea	ast cance	er).							
39.	A mai	n who carries an X-lin	ked allele will	pass it c	on to							
	A)	All of his daughters		B)	Half of his	daughters						
	C)	All of his sons		D)	Half of his	sons						
40.	ATP i	s used indirectly for v										
	A)	Accumulation of Ca				R)						
	B)	Transport of Na ⁺ fro	m intracellular	to intra	cellular fluid							
	C)	Transport of K ⁺ from										
	D)	Absorption of gluco	se by intestinal	epithel	ial cells							

41.	Dege	eneration of dopaminergic neurons l	has been 1	-
	A)	Schizophrenia	B)	Parkinson's disease
	C)	Myasthenia gravis	D)	Curare poisoning
42.	Bloo	d volume affects cardiac output prin	marily by	directing influencing
	A)	Heart rate	B)	Peripheral resistance
	C)	Arterial blood pressure	D)	Venous blood pressure
43.	In th	e calcium regulatory system:		
	A)	The calcitonin gland responds to	high calc	ium levels.
	B)	The calcitonin gland responds to		
	C)	Calcitonin release causes increas	sed release	e of calcium from bones.
	D)	Calcitonin release causes decrease	sed release	e of calcium from bones.
44.	The	gene responsible for initiating male	developm	nent in a fetus is the:
	A)	XY gene	B)	MIF gene
	C)	STD gene	D)	SRY gene
45.	The l	hormone most directly associated w	ith the str	ress response is:
	A)	Cortisol	B)	Thyroxine (T4)
	C)	Triiodothyronine (T3)	D)	Growth hormone
46.	In a	chemical synapse, the neurotransmi	tter is mo	ved across the synaptic cleft by:
	A)	Actin filaments	B)	G-protiens
	C)	Synaptic vesicles	D)	Diffusion
47.	India	a's only wild ape is:		
	A)	The Hanuman Langur	B)	The Rhesus Macaque
	C)	The Hoolock Gibbon	D)	The Lion-Tailed Macaque
48.	Whic	ch is not a biosphere reserve?		
	A)	Little Rann of Kutch, Gujarat		
	B)	Nilgiri Biosphere Reserves, Tam	il Nadu	
	C)	Nicobar Islands, Andaman and N	Vicobar	
	D	Cold Desert, Himachal Pradesh		
49.	The	first successful use of gene therapy	was in:	
	A)	Genetic diseases	B)	Cancer
	C)	Endocrine disorders	D)	Cardiovascular diseases
50.	Whic	ch of the following is not a program	ıming lang	guage in Bioinformatics?
	A)	Visual Basic B) C++		. •
51.	Whic	ch of the following sequence would	most like	ly to be a folded RNA structure?
	A)	UUUCGAAGUCGUGUGA	B)	AAAGCCCGAGUUUUAGC
	C)	HILCGGLICCAAACCCGGLI	D)	CGUITICUCACALIGCALIC

52.	condit rough	tions, resulted endoplasmic cular weight of 20 kDa pep 10 kDa pep 40 kDa pep	d in a 40 certicul of the two tide from tide from tide from	00 kDa prote um resulted peptides is on N terminal a	ein. The s in a 360 due to the and 20 kD	ame mRNA) kDa protei	when trans. The make term	
53.		GDP=ADP+ +NADH. Say Both enzym Enzyme A	y which ones are book is beneficed by the second contractions are the second contracti	ereas the enz of the following eneficial to co cial whereas	ing is not tell enzyme B enzyme A	atalyses the re	l to cell	es the reaction NADH+NADP ⁺ =
54.	The mA)	nost common Trp, Phe	amino ao B)	cid residues f Val, His	Found in th C)	e lipid-water Ala, Asp	interface D)	is: Trp, Tyr
55.	Na ⁺ I A)	K ⁺ ATPase pu Ankyrin	imp does B)	not interact Cofilin	with C)	IP3R	D)	Caveolin
56.	The k A)	ey amino acid Asp	d residue B)	in movemen Glu	t of both N C)	Na ⁺ and K ⁺ a His	and Na ⁺ I D)	K ⁺ ATPase pump Lys
57.		h of the follo acids in their Polar bear Desert igua	membrar	_	y to have B) D)	the highest Thermophil Antarctic fi	lic bacter	ge of unsaturated
58.	Chann A) B) C) D)	Passive tran Moving one	nergy fronsport of molecu	om ATP hydions down the at a time w	eir elelctro ith each c	transport ions ochemical gra ycle of openic chemical grad	dients ng and cl	osing
59.	In the A) B) C) D)	cAMP activ	binds to ase A phorates pho	•	-	cors		
60.	viruse	es?		uited for the	e identific			wing bacteria or
	A) C)	BrdU- enrice Stable isoto		ng	B) D)	Suppressive RT-PCR	e subtract	tion hybridization

61.	Exoso	me in et	ıkaryot	es invo	lves in all the f	ollowin	g except:				
	A)	rRNA	-			B)	tRNA proces	ssing			
	C)	polyad	lenylati	on		D)	mRNA degra	adation			
62.	Which 1. 2. 3.	Free ri 5 – 5 b When	bosome ound fo cells	es and interest or and interest of a second in the second	e correct staten membrance ribo on occurs in the srupted by ho y small closed	osomes ER lun megeni	nen sation, the en		nic reticulum is		
	A)	1 and 2	2	B)	2 and 3	C)	1 and 3	D)	1, 2 and 3		
63.	Match	the enz	Colun	nn A	-	roduct in column B that it produces Column B					
		a.	Guany	lcyclas	se	1.	cAMP				
		b.	Adeny	cyclas	e	2.	DAG and IP	3			
		c.	Ophos	spholip	idase – C	3.	cGMP				
		d.			inositol	4.	Phosphatidylinositol 4 – phosphate 4 5 – biphospate (PIP) kinase (PIP2)				
	A)	a-3, b-	1 c-2	d_4		B)	a-2, b-3, c-1,	d - 4			
	C)	a-4, b-				D)	a-4, b-1, c-2,	•			
64.	Match	the list	I with	the list List I	II and select th	e correc	et answer using List I		e given below.		
		a.	Recor	nbinati	on DNA	1.	Marker gene	/reporter			
		b.	Agrob	acteriu	m	2.	DNA ligase				
		c.	Sticky			3.	T – DNA				
		d.	Plasm			4.	Restriction e	nzymes			
	A)	a-3, b-				B)					
	C)	a-4, b-	3, c-1,	d-2		D)	a-4, b-3, c-2,	, d- 1			
65.	Match	-			heir vectors and			swer.			
		a)			g day time	1.	Vesperal				
		b)		e during		2.	Diurnal				
		c)	Active	during	g dawn	3.	Auroral				
			1			4.	Crepuscular				
	4.5	a	b	c							
	A)	1	2	3							
	B)	2	1								
	C)	4	2	3							
	D)	3	1	4							
66.	Which	is the d	late of	the star	ting point of zo	ologica	l nomenclature	e as fixed	l by the ICZN?		
	A)		ary 190			B)	1 January 18		-		
	C)		ary 175			D)	23 May 1707				

67.	The n	umber of general 17	es in the B)	human mitod 21	chondria i C)	s 37	D)	27			
68.	Which	2. Krau3. Paci	_	orpuscles oulbs ouscles	iated with	n tactile sensa	ation?				
	A)	1 and 2	B)	2 and 4	C)	2 only	D)	1, 2, 3 and 4			
69.	The p	rinciple of os	mosis is	applied in:							
	A)	Perfusion			B)	Infusion o	f saline				
	C)	Dialysis			D)	All of the	above				
70.	In ner	ve cells,									
	A)	The level of	f Sodium	ions is lowe	r outside t	than inside.					
	B)	The level of	f Potassiı	ım ions is hiş	gher outsi	de than insid	e.				
	C)			ım ions is hiş							
	D)	The levels of	of Potass	ium ions insi	de and tha	at of the Sod	ium ions o	utside are equal.			
71.	Identi	fy the correct	statemen	nt:							
	A)	The world l	Environn	nent Day is o	elebrated	on May 221	nd, the Wo	orld Wildlife Day			
		is celebrate February 28		e 5th and the	e Nationa	l Science Da	ay of India	a is celebrated on			
	B)	3) The world Environment Day is celebrated on June 5th, the World Wildlife Day is celebrated on March 3rd and the National Science Day of India is celebrated on February 28th									
	C)										
	D)										
72.	Gluca	gon is secrete	ed by:								
	A)	Alpha cells	-	increas	B)	Beta cells	of the pan	creas			
	C)	Hepatocytes	s of the l	iver	D)	Goblet cel	ls of the ir	ntestine			
73.	An ex	ample for a s	tructures	that is analo	gous in fu	nction and h	omologou	s in anatomy is			
	A)	Statocysts o	f inverte	brates and ot	oliths of v	ertebrates.		-			
	B)	Wings of bi	rds and b	oats.							
	C)	Wings of in	sects and	l birds.							
	D)	Wings of in	sects and	l bats.							
74.	The e	fficiency of se		eatment using	g biologic						
	A)	Chlorination			B)	Adding ac		-			
	C)	Providing a	naerobic	conditions	D)	Treatment	with ozor	ne			

- 75. The patagium of the draco is an example for
 - A) Evolutionary link between birds and reptiles
 - B) Convergent evolution
 - C) Divergent evolution
 - D) Evolutionary link between birds and mammals
- 76. The characteristic feature(s) of the agouti gene which influences coat colour in rabbits is that
 - A) It codes for a peptide signalling molecule which functions as an inverse agonist.
 - B) It is lethal in all mammals when it is homozygous.
 - C) It influences coat colour by oxidising methionine.
 - D) Rufus modifiers are ineffective when the agouti gene is present.
- 77. A couple, in which the female partner was infertile, used the male partner's sperm and a donor's egg to produce a viable embryo by IVF. They contracted a surrogate mother to bear the concept to full term, but the gestational-surrogate mother refused to part with the child she delivered claiming that the child was her own impregnated by the natural father of the child. Which among the following will settle the issue?
 - A) Analysing the blood groups of the child, the surrogate mother and the actual (intended) parents.
 - B) Comparing the mitochondrial DNA of the child and the surrogate mother.
 - C) Comparing the DNA sequence of the father and the child.
 - D) Analysing the proteome of the surrogate mother and the intended parents.
- 78. An example for a disease caused by pleotropic genes is
 - A) Marfan syndrome

B) Edwards syndrome

C) Mosaicism

D) Cri-du-chat syndrome

- 79. In poriferans, the presence of a particular canal system makes it loose its radial symmetry. Which among the following is it?
 - A) Sycon type system

B) Ascon type system

C) Leuconoid type system

D) Rhagon type system

- 80. Swim bladders are absent in:
 - A) Heteropneustes fossilis

B) Anabas testudenius

C) All elasmobranchii

- D) Latimeria chalumnae
- 81. Assertion: The occurrence of single sequence repeats (SSR) is lesser in gene regions Reason: SSRs have extremely low mutation rates that preserves that integrity of genes which could compromise gene expression
 - A) The assertion is true, but the reason given is false and does not sustain the assertion.
 - B) Both the assertion and reason are true but are independent of each other.
 - C) The assertion is false but the reason is correct but does not sustain the assertion.
 - D) Both the assertion and the reason are false and contradict each other.

- 82. The corpus luteum
 - A) Produces FSH, prepares the uterus to accept the fertilised egg and sustains pregnancy.
 - B) Induces the formation of corona radiata and releases oxytocin which induces parturition.
 - C) Produces progesterone which acts on the lining of the womb, and halts the production of FSH
 - D) Degenerates once the pregnancy begins.
- 83. Which among the following is used as a biopesticide to kill larvae of insect pests?
 - A) Nuclear polyhedrosis virus, Bacillus thuringiensis, Raus sarcoma virus and myxoma virus.
 - B) Bacillus thuringiensis and Nuclear polyhedrosis virus.
 - C) Thermus aquaticus, Nuclear polyhedrosis virus and Bacillus thuringiensis
 - D) Agrobacterium tumefasciens and Nuclear polyhedrosis virus.
- 84. Statement 1. Cephalopods do not have a counter current system that assists in the exchange of gases through the ctenidia.
 - Statement 2. Cephalopods have branchial hearts which boost the flow of blood through the ctenidia, compensating for the lack of a counter current system.
 - A) Statement 1 is false, but statement 2 is true.
 - B) Statements 1 and 2 are true and statement 2 is a valid explanation for statement 1.
 - C) Both statements are false.
 - D) Statement 1 is true while statement 2 is false and contradicts statement 1.
- 85. Which among the following is a pest of green gram?
 - A) Sitophilus granaries
- B) Cylas formicarius
- C) Callosobruchus chinensis
- D) Ephestia cautella
- 86. Which among the following is false?
 - A) Retrogressive metamorphosis is seen in Herdmania while metagenesis is seen in Aurelia.
 - B) Coprophagy is practised by Oryctolagus while evisceration is seen in Holothurians.
 - C) Diploid hymenopterans are females while haploids are males.
 - D) The larva of Urochordata is called Tornaria while that of Crustacea is called Nauplius.
- 87. In aquaculture, the maximum stocking density of a single species is achieved in:
 - A) Integrated farming practices
- B) Traditional practices

C) Composite culture

- D) Intensive culture
- 88. Which among the following is an insect pest of cashew?
 - A) Phytophthora palmivora
- B) Corticium salmonicolor
- C) Plocaederus ferrugineus
- D) Helicotylenchus astriatus

89.	Consider the following statements: Statement 1: An example for convergent evolution is wings of insects and flying squirrel and that for divergent evolution is beaks of Darwin's finches. Statement 2: Convergent evolution happens in organisms that are closely related while divergent evolution is observed in organisms that are not closely related.											
	A) C)	Both statement 2 a			B) D)	Statement 1 alone is true Both statements are false						
90.	The or	nly animals of are:	dinosaur	lineage to	survive the	Cretaceous-	-Paleocer	ne extinction				
	A)	Aves	B)	Reptiles	C)	Insects	D)	Pisces				
91.	The 9t	th vertebra of tl	ne frog i	S								
	A)	Amphicoelus			B)	Procoelus						
	C)	Opisthocoelus	S		D)	Biconvex						
92.	The active component in the commercially available hormone used to stimulate ovulation in fishes in aquaculture practices is:											
	A)	Oxytocin	B)	hCG	C)	Estrogen	D)	GnRH				
93.	A pers	son with Huntin	ngton's o	chorea								
	A)	Is sterile.										
	B) Has an additional chromosome 18.C) Looses control of motor activity and co-ordination.											
	C)			_		nation.						
	D)	Has an addition	onal chr	omosome 1	12							
94.	The final acceptor of electrons in the electron transport chain is											
	A)	Cytochrome p			B)	Hydrogen						
	C)	Haem co-fact	or in co	mplex IV	D)	Oxygen						
95.	Which among the following is true?											
	A) Crossing over occurs only between autosomal chromosomes and not between sex chromosomes.											
	B)	After crossing	g over, s	ister chron	natids are no	t identical.						
	C)	The expression chromosomes		proteins i	n human (ocytes is	enhanced	d by lamp-b	rush			
	D)	Genes that jur	mp from	one chron	nosome to a	nother canno	ot be tran	scribed.				
96.	The H	folliday model	describe	S								
	A)	D-loop replication	ation		B)	Recombina	tion					
	C)	Arrangement	of fate r	naps	D)	Lariat form	ation in I	RNA processi	ng			
97.		n among the fol	_			neotic genes	?					
	A)	They encode	•									
	B)	organisms.			-		ıcal stru	ctures in var	10US			
	C)	Their DNA se				- 1						
	D)	Mutations in	homeoti	c genes cau	use displace	d body parts						

		d.	Kıdne	y		4.	Purine	metabolism	l		
	A) C)	a-4, b-3 a-3, b-2					B) D)	a-3, b-4, c-2 a-1, b-4, c-2			
99.	The ch	emical l COOH		g betwe B)	en two a	amino a	cids res C)	sults in the e H ₂ O	limination D)	of OH ⁻	
100.	Identif A) B) C) D)	circulation. It inter-connects the ventricles of the foetal brain. It is the closed region that replaces the foramen ovale of the foetal heart.									
101.	Foul bi	rood dis Bacteri		f honey B)	bee is ca Fungua		y C)	Virus	D)	Nematodes	
102.	The oil A) B) C) D)	oil in the oil-immersion objective of a light microscope Increases the numerical aperture of the condenser lens. Increases the numerical aperture of the objective lens. It deflects and helps eliminate excess light reaching the objective lens. It prevents the specimen from drying.									
103.	 Assertion: Defects of the immune system in a human child may not be evident till the end of the first year. Reason 1.: The new born child has a very active and robust immune system which is able to resist all infections. Reason 2.: Breast milk of the mother contains antibodies which are absorbed as such through the alimentary system of the child imparting immunity. A) The assertion is true and the reason 1 explains the assertion. B) The assertion is true and the reason 2 explains the assertion. 										
 B) The assertion is true and the reason 2 explains the assertion. C) The assertion is false, but and the statement given as reason 1 is true. D) The assertion is false, but and the statement given as reason 2 is true 104. Which among the following is/ are true? A) Antibodies against blood group antigens are present at the time of birth. B) Antibodies against blood group antigens are absent at the time of birth. C) A child born to a mother with blood group A and father with blood group be born with blood group O. D) In the human immune system, class switching occurs only in B-cells and n T-cells 								birth. oirth. I group B cannot			

1. 2.

3.

Erythropoietin Fatty acid metabolism Vitamin K

Identify the correct match:
a. Haemostasis

Uric acid

Co-enzyme A

b.

c.

98.

- 105. The lymphatic fluid is propelled by
 - A) Muscular activity.
 - B) Pumping action of the heart.
 - C) Peristaltic movements of the lymphatic vessels.
 - D) Hydrostatic pressure.
- 106. Which among the following is/ are true?
 - 1. In both echinoderms and chordates, the skeletal structures are derived from the mesoderm.
 - 2. While the segmentation of annulate animals is complete, that of chordates is limited to the dorsal myotomal region.
 - 3. The flow of blood is dorsal to ventral in annelids and insects while it is ventral to dorsal in vertebrates.
 - 4. The cleavage of the fertilised egg in chordates is radial and irregular while in annulates is spiral and regular.
 - A) 3 and 4 B) 2, 3 and 4 C) 1, 2, 3 and 4 D) 3 only
- 107. Consider the following statements:

Statement 1: In arthropods and molluscs regeneration of ATP is accomplished from phosphoarginine.

Statement 2: Chordates can generate phosphocreatine from glycine, sparing arginine needed for the synthesis of arginine-rich proteins.

Statement 3: Generating phosphocreatine from glycine spares arginine for the synthesis of arginine-rich proteins giving chordates an evolutionary advantage.

- A) All statements are false.
- B) Statement 1 is true while statements 2 and 3 are false.
- C) All statements are true.
- D) Statements 2 and 3 are true but statement 1 is false because ATP is regenerated only from AMP.
- 108. Which among the following defines embryonic development of an annelid?
 - A) Gastrulation by invagination, blastopore forms the mouth, coelom arising as an enterocoele, dipleurula-type larva
 - B) Gastrulation by immigration, blastopore forms the mouth, coelom formed as a schizocoele and trochophore-like larva.
 - C) Gastrulation by invagination, blastopore forms the anus, coelom arising as an enterocoele, doliolaria-type larva
 - D) Gastrulation by invagination, blastopore forms the anus, coelom arising as an enterocoele, trochophore-like larva.
- 109. The correlation between two variables is strongest and linear when
 - A) The value is 1 B) The value is less than 1
 - C) The value is more than 1 D) The value is zero

- 110. A characteristic feature of viruses that infect animals is that
 - A) They are capable of penetrating the cell membrane using lytic enzymes they possess.
 - B) They require a receptor complex for attachment which facilitates their entry.
 - C) Since they do not have mitochondria, they depend only on glycolytic pathway to generate ATP when they are outside their host.
 - D) Immediately after entering the host cell, the early genes are activated to produce capsid and envelope proteins.
- 111. Ethical practices on animal models require that the animals used in the study be euthanized after experimentation. The chemical(s) approved for euthanasia is:
 - A) Potassium cyanide
 - B) Methyl-iso-cyanate
 - C) Combination of formaldehyde and gluteraldehyde
 - D) Mixture of Sodium-barbiturate, KCl and Magnesium sulphate
- 112. In the event of alkalosis of human blood, one of the methods by which the body attains homeostasis is by
 - A) Absorption of CO₂ through the lungs
 - B) Stopping renal bi-carbonate excretion
 - C) Reduce chloride content in the blood
 - D) Increases aldosterone secretion
- 113. In sandwich ELISA:
 - A) The antibody that captures the target antigen and the antibody that functions as the probe bind to the same epitope.
 - B) The antibody that captures the target antigen and the antibody that functions as the probe bind to different epitopes of the same antigen.
 - C) The antibody that captures the antigen belongs to the IgG class while the antibody that functions as the probe belongs to the IgM class.
 - D) The enzyme that is linked to the antibody acts on the antigen which functions as the substrate.
- 114. Which among the following is/ are true with reference to Normal and Poisson distributions?
 - 1. In normal distribution the basic shape is always symmetric, while in a Poisson distribution it changes.
 - 2. A Poisson distribution is discrete while a normal distribution is continuous.
 - 3. A Poisson random variable is always ≥ 0 .
 - A) 1 alone is true B) 1 and 2 are true
 - C) 2 and 3 are true D) 1, 2 and 3 are true
- 115. The ideal probe that can be used to detect a template after Northern blotting is
 - A) Enzyme linked antibodies against the protein.
 - B) A DNA template having the same sequence.
 - C) An RNA template having a complementary sequence.
 - D) A protein that is coded by the template.

116.	The id	deal temperatur 37 ⁰ C	e for in B)	vitro ligatior 42º C	n using T4	DNA ligase 16° C	1S: D)	$72^{0}\mathrm{C}$			
	A)	37 C	D)	42 C	C)	10 C	D)	12 C			
117.	The e	ntity known as	the gua	rdian of the	cell						
	A)	Telomeres	C		B)	Cdks					
	C)	p53			D)	Tumor Ne	crosis Fac	tor-α			
118.	In bioinformatics, FASTA format denotes										
	A)	Tool for rapid	d alignn	nent of DNA	sequence	S.					
	B)	Software that	enable	s quick and	fast submis	ssion of sequ	iences to 1	the database			
	C)	C) Text-based format for representing nucleotide or amino acid sequences using single-letter codes.									
	D)	A standard fi	le name	extension to	sequence	s submitted	to NCBI.				
119.	The p	robes used in p	rotein-ı	nicroarray a	nalyses are	<u>;</u>					
	A)	Monoclonal a	antibodi	ies.							
	B)	Enzyme-linke	ed IgG	antibodies.							
	C)	Monoclonal a	antibodi	ies conjugate	ed with flu	orescent dye	S.				
	D)	DNA templat	tes that	code for exp	ressed pro	teins.					
120.	The p	rimary function	n of B-c	omplex vita	mins is to	function as:					
	A)	Anti-oxidants	5		B)	Pigments					
	C)	Co-enzymes			D)	Structural	componer	nts			
